import pandas as pd
titanic = pd.read_csv('https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv')
print("la moyenne d age= " , titanic["Age"].mean())
titanic[["Age", "Fare"]].median()
Output:
la moyenne d age= 29.69911764705882
Age 28.0000
Fare 14.4542
dtype: float64
Sommaire:
import pandas as pd
titanic = pd.read_csv('https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv')
titanic[["Age", "Fare"]].describe()
Output:
Age Fare
count 714.000000 891.000000
mean 29.699118 32.204208
std 14.526497 49.693429
min 0.420000 0.000000
25% 20.125000 7.910400
50% 28.000000 14.454200
75% 38.000000 31.000000
max 80.000000 512.329200
import pandas as pd
titanic = pd.read_csv('https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv')
titanic.agg(
{
"Age": ["min", "max", "median", "skew"],
"Fare": ["min", "max", "median", "mean"],
}
)
Output:
Age Fare
min 0.420000 0.000000
max 80.000000 512.329200
median 28.000000 14.454200
skew 0.389108 NaN
mean NaN 32.204208
Count:
import pandas as pd
titanic = pd.read_csv('https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv')
titanic["Pclass"].value_counts()
Output:
3 491
1 216
2 184
Name: Pclass, dtype: int64
Regroupement:
import pandas as pd
titanic = pd.read_csv('https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv')
titanic.groupby(["Sex", "Pclass"])["Fare"].mean()
Output:
Sex Pclass
female 1 106.125798
2 21.970121
3 16.118810
male 1 67.226127
2 19.741782
3 12.661633
Name: Fare, dtype: float64
Correlation:
import pandas as pd
titanic = pd.read_csv('https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv')
titanic.corr()
Output:
PassengerId Survived Pclass Age SibSp Parch Fare
PassengerId 1.000000 -0.005007 -0.035144 0.036847 -0.057527 -0.001652 0.012658
Survived -0.005007 1.000000 -0.338481 -0.077221 -0.035322 0.081629 0.257307
Pclass -0.035144 -0.338481 1.000000 -0.369226 0.083081 0.018443 -0.549500
Age 0.036847 -0.077221 -0.369226 1.000000 -0.308247 -0.189119 0.096067
SibSp -0.057527 -0.035322 0.083081 -0.308247 1.000000 0.414838 0.159651
Parch -0.001652 0.081629 0.018443 -0.189119 0.414838 1.000000 0.216225
Fare 0.012658 0.257307 -0.549500 0.096067 0.159651 0.216225 1.000000